Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
PLoS One ; 19(2): e0299543, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38422035

RESUMO

Circulating concentration of arginine, alanine, aspartate, isoleucine, leucine, phenylalanine, proline, tyrosine, taurine and valine are increased in subjects with insulin resistance, which could in part be attributed to the presence of single nucleotide polymorphisms (SNPs) within genes associated with amino acid metabolism. Thus, the aim of this work was to develop a Genetic Risk Score (GRS) for insulin resistance in young adults based on SNPs present in genes related to amino acid metabolism. We performed a cross-sectional study that included 452 subjects over 18 years of age. Anthropometric, clinical, and biochemical parameters were assessed including measurement of serum amino acids by high performance liquid chromatography. Eighteen SNPs were genotyped by allelic discrimination. Of these, ten were found to be in Hardy-Weinberg equilibrium, and only four were used to construct the GRS through multiple linear regression modeling. The GRS was calculated using the number of risk alleles of the SNPs in HGD, PRODH, DLD and SLC7A9 genes. Subjects with high GRS (≥ 0.836) had higher levels of glucose, insulin, homeostatic model assessment- insulin resistance (HOMA-IR), total cholesterol and triglycerides, and lower levels of arginine than subjects with low GRS (p < 0.05). The application of a GRS based on variants within genes associated to amino acid metabolism may be useful for the early identification of subjects at increased risk of insulin resistance.


Assuntos
Resistência à Insulina , Adulto Jovem , Humanos , Adolescente , Adulto , Resistência à Insulina/genética , Estudos Transversais , 60488 , Alanina , Arginina
2.
Chem Biodivers ; 21(2): e202301602, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38102075

RESUMO

Compound 3, a trimeric anthranilic acid peptide, and another three metabolites were isolated from an organic extract from the culture medium of Malbranchea flocciformis ATCC 34530. The chemical structure proposed previously for 3 was unequivocally assigned via synthesis and X-ray diffraction analysis. Tripeptide 3 showed insulinotropic properties by decreasing the postprandial peak in healthy and hyperglycemic mice. It also increased glucose-induced insulin secretion in INS-1E at 5 µM, specifically at higher glucose concentrations. These results revealed that 3 might act as an insulin sensitizer and a non-classical insulin secretagogue. Altogether, these findings are in harmony with the in vivo oral glucose tolerance test and acute oral hypoglycemic assay. Finally, the chemical composition of the extract was established by the Global Natural Products Social Molecular Network platform. Phylogenetic analysis using the internal transcribed spacer region revealed that M. flocciformis ATCC 34530 is related to the Malbrancheaceae.


Assuntos
Hipoglicemiantes , Insulina , Onygenales , ortoaminobenzoatos , Camundongos , Animais , Hipoglicemiantes/farmacologia , Hipoglicemiantes/química , Filogenia , Insulina/metabolismo , Glucose
3.
Metabolites ; 13(12)2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38132872

RESUMO

MicroRNAs (miRNAs) are small noncoding RNAs approximately 22 nucleotides in length. Their main function is to regulate gene expression at the posttranscriptional level by inhibiting the translation of messenger RNAs (mRNAs). miRNAs originate in the cell nucleus from specific genes, where they can perform their function. However, they can also be found in serum, plasma, or other body fluids travelling within vesicles called exosomes and/or bound to proteins or other particles such as lipoproteins. miRNAs can form complexes outside the cell where they are synthesized, mediating paracrine and endocrine communication between different tissues. In this way, they can modulate the gene expression and function of distal cells. It is known that the expression of miRNAs can be affected by multiple factors, such as the nutritional or pathological state of the individual, or even in conditions such as obesity, insulin resistance, or after any dietary intervention. In this review, we will analyse miRNAs whose expression and circulation are affected in conditions of obesity and insulin resistance, as well as the changes generated after a dietary intervention, with the purpose of identifying new possible biomarkers of early response to nutritional treatment in these conditions.

4.
Antioxidants (Basel) ; 12(11)2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-38001809

RESUMO

Excessive consumption of fat and carbohydrates, together with a decrease in traditional food intake, has been related to obesity and the development of metabolic alterations. Ramon seed is a traditional Mayan food used to obtain Ramon flour (RF) with high biological value in terms of protein, fiber, micronutrients, and bioactive compounds such as polyphenols. However, few studies have evaluated the beneficial effects of RF. Thus, we aimed to determine the metabolic effects of RF consumption on a high-fat-diet-induced obesity mouse model. We divided male BALB/c mice into four groups (n = 5 each group) and fed them for 90 days with the following diets: Control (C): control diet (AIN-93), C + RF: control diet adjusted with 25% RF, HFD: high-fat diet + 5% sugar in water, and HFD + RF: high-fat diet adjusted with 25% RF + 5% sugar in water. The RF prevented the increase in serum total cholesterol (TC) and alanine transaminase (ALT) that occurred in the C and HFD groups. Notably, RF together with HFD increased serum polyphenols and antioxidant activity, and it promoted a decrease in the adipocyte size in white adipose tissue, along with lower hepatic lipid accumulation than in the HFD group. In the liver, the HFD + RF group showed an increase in the expression of ß-oxidation-related genes, and downregulation of the fatty acid synthase (Fas) gene compared with the HFD group. Moreover, the HFD + RF group had increased hepatic phosphorylation of AMP-activated protein kinase (AMPK), along with increased nuclear factor erythroid 2-related factor 2 (NRF2) and superoxide dismutase 2 (SOD2) protein expression compared with the HFD group. Thus, RF may be used as a nutritional strategy to decrease metabolic alterations during obesity.

6.
Nutrients ; 15(15)2023 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-37571315

RESUMO

Amino acids have been extensively studied in nutrition, mainly as key elements for maintaining optimal protein synthesis in the body as well as precursors of various nitrogen-containing compounds. However, it is now known that amino acid catabolism is an important element for the metabolic control of different biological processes, although it is still a developing field to have a deeper understanding of its biological implications. The mechanisms involved in the regulation of amino acid catabolism now include the contribution of the gut microbiota to amino acid oxidation and metabolite generation in the intestine, the molecular mechanisms of transcriptional control, and the participation of specific miRNAs involved in the regulation of amino acid degrading enzymes. In addition, molecules derived from amino acid catabolism play a role in metabolism as they are used in the epigenetic regulation of many genes. Thus, this review aims to examine the mechanisms of amino acid catabolism and to support the idea that this process is associated with the immune response, abnormalities during obesity, in particular insulin resistance, and the regulation of thermogenesis.


Assuntos
Resistência à Insulina , MicroRNAs , Humanos , Epigênese Genética , Aminoácidos/metabolismo , Obesidade
7.
J Nutr Biochem ; 120: 109415, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37437746

RESUMO

Omega-3 fatty acids (w-3 FA) have anti-inflammatory effects and improve mitochondrial function. Nonetheless, little is known about their effect on mitochondrial bioenergetics of peripheral blood mononuclear cells (PBMCs) in individuals with obesity. Thus, this study aimed to determine the mitochondrial bioenergetics status and cell subset composition of PBMCs during obesity, before and after 1 month supplementation with w-3 FA. We performed a case-control study with twelve women with normal BMI (lean group) and 19 with grade 2 obesity (obese group), followed by a before-after prospective study where twelve subjects with obesity received a 1 month intervention with 5.25 g of w-3 FA (3.5 g eicosapentaenoic (EPA) and 1.75 g docosahexaenoic (DHA) acids), and obtained PBMCs from all participants. Mitochondrial bioenergetic markers, including basal and ATP-production associated respiration, proton leak, and nonmitochondrial respiration, were higher in PBMCs from the obese group vs. the lean group. The bioenergetic health index (BHI), a marker of mitochondrial function, was lower in the obese vs. the lean group. In addition, Th1, Th2, Th17, CD4+ Tregs, CD8+ Tregs, and Bregs, M1 monocytes and pDCreg cells were higher in PBMCs from the obese group vs. the lean group. The w-3 FA intervention improved mitochondrial function, mainly by decreasing nonmitochondrial respiration and increasing the reserve respiratory capacity and BHI. The intervention also reduced circulating pro-inflammatory and anti-inflammatory lymphocyte and monocytes subsets in individuals with obesity. The mitochondrial dysfunction of PBMCs and the higher proportion of peripheral pro-inflammatory and anti-inflammatory immune cells in subjects with obesity, improved with 1 month supplementation with EPA and DHA.


Assuntos
Ácidos Graxos Ômega-3 , Leucócitos Mononucleares , Humanos , Feminino , Estudos de Casos e Controles , Estudos Prospectivos , Ácidos Docosa-Hexaenoicos/farmacologia , Ácidos Docosa-Hexaenoicos/uso terapêutico , Ácidos Graxos Ômega-3/farmacologia , Ácidos Graxos Ômega-3/uso terapêutico , Obesidade/tratamento farmacológico , Inflamação/tratamento farmacológico , Mitocôndrias , Suplementos Nutricionais , Ácido Eicosapentaenoico/farmacologia , Ácido Eicosapentaenoico/uso terapêutico , Ácidos Graxos
8.
Nutrients ; 15(11)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37299553

RESUMO

Pecans (Carya illinoinensis) are considered a functional food due to the high content of polyunsaturated fatty acids, dietary fiber and polyphenols. To determine the effect of whole pecans (WP) or a pecan polyphenol (PP) extract on the development of metabolic abnormalities in mice fed a high-fat (HF) diet, we fed C57BL/6 mice with a Control diet (7% fat), HF diet (23% fat), HF containing 30% WP or an HF diet supplemented with 3.6 or 6 mg/g of PP for 18 weeks. Supplementation of an HF diet with WP or PP reduced fat mass, serum cholesterol, insulin and HOMA-IR by 44, 40, 74 and 91%, respectively, compared to the HF diet. They also enhanced glucose tolerance by 37%, prevented pancreatic islet hypertrophy, and increased oxygen consumption by 27% compared to the HF diet. These beneficial effects were associated with increased thermogenic activity in brown adipose tissue, mitochondrial activity and AMPK activation in skeletal muscle, reduced hypertrophy and macrophage infiltration of subcutaneous and visceral adipocytes, reduced hepatic lipid content and enhanced metabolic signaling. Moreover, the microbial diversity of mice fed WP or PP was higher than those fed HF, and associated with lower circulating lipopolysaccharides (~83-95%). Additionally, a 4-week intervention study with the HF 6PP diet reduced the metabolic abnormalities of obese mice. The present study demonstrates that WP or a PP extract prevented obesity, liver steatosis and diabetes by reducing dysbiosis, inflammation, and increasing mitochondrial content and energy expenditure. Pecan polyphenols were mainly condensed tannin and ellagic acid derivatives including ellagitannins as determined by LC-MS. Herein we also propose a model for the progression of the HF diet-mediated metabolic disorder based on early and late events, and the possible molecular targets of WP and PP extract in preventive and intervention strategies. The body surface area normalization equation gave a conversion equivalent to a daily human intake dose of 2101-3502 mg phenolics that can be obtained from 110-183 g pecan kernels/day (22-38 whole pecans) or 21.6-36 g defatted pecan flour/day for an average person of 60 kg. This work lays the groundwork for future clinical studies.


Assuntos
Carya , Diabetes Mellitus , Fígado Gorduroso , Camundongos , Humanos , Animais , Dieta Hiperlipídica/efeitos adversos , Polifenóis/farmacologia , Polifenóis/metabolismo , Disbiose/prevenção & controle , Disbiose/metabolismo , Camundongos Endogâmicos C57BL , Obesidade/etiologia , Obesidade/prevenção & controle , Fígado Gorduroso/prevenção & controle , Fígado/metabolismo , Inflamação/prevenção & controle , Inflamação/metabolismo , Diabetes Mellitus/metabolismo , Hipertrofia , Metabolismo Energético
9.
Int J Mol Sci ; 24(9)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37175691

RESUMO

Obesity causes systemic inflammation, hepatic and renal damage, as well as gut microbiota dysbiosis. Alternative vegetable sources rich in polyphenols are known to prevent or delay the progression of metabolic abnormalities during obesity. Vachellia farnesiana (VF) is a potent source of polyphenols with antioxidant and anti-inflammatory activities with potential anti-obesity effects. We performed an in vivo preventive or an interventional experimental study in mice and in vitro experiments with different cell types. In the preventive study, male C57BL/6 mice were fed with a Control diet, a high-fat diet, or a high-fat diet containing either 0.1% methyl gallate, 10% powdered VFP, or 0.5%, 1%, or 2% of a polyphenolic extract (PE) derived from VFP (Vachellia farnesiana pods) for 14 weeks. In the intervention study, two groups of mice were fed for 14 weeks with a high-fat diet and then one switched to a high-fat diet with 10% powdered VFP for ten additional weeks. In the in vitro studies, we evaluated the effect of a VFPE (Vachellia farnesiana polyphenolic extract) on glucose-stimulated insulin secretion in INS-1E cells or of naringenin or methyl gallate on mitochondrial activity in primary hepatocytes and C2C12 myotubes. VFP or a VFPE increased whole-body energy expenditure and mitochondrial activity in skeletal muscle; prevented insulin resistance, hepatic steatosis, and kidney damage; exerted immunomodulatory effects; and reshaped fecal gut microbiota composition in mice fed a high-fat diet. VFPE decreased insulin secretion in INS-1E cells, and its isolated compounds naringenin and methyl gallate increased mitochondrial activity in primary hepatocytes and C2C12 myotubes. In conclusion VFP or a VFPE prevented systemic inflammation, insulin resistance, and hepatic and renal damage in mice fed a high-fat diet associated with increased energy expenditure, improved mitochondrial function, and reduction in insulin secretion.


Assuntos
Dieta Hiperlipídica , Resistência à Insulina , Masculino , Animais , Camundongos , Dieta Hiperlipídica/efeitos adversos , Prebióticos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Extratos Vegetais/farmacologia , Inflamação/tratamento farmacológico
10.
J Ethnopharmacol ; 312: 116522, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37080365

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Chaya (Cnidoscolus aconitifolius (Mill.) I.M. Johnst) is an important component of the regular diet and traditional medicine of indigenous communities in Mexico. Customarily, Chaya is consumed as a beverage made of macerated leaf, cooked, or prepared in teas or infusions to empirically treat obesity, diabetes, gastrointestinal disorders, and kidney stones. The beneficial effects of Chaya can be attributed to the presence of protein, dietary fiber, vitamins, and especially polyphenols, which regulate mitochondrial function. Therefore, polyphenols present in Chaya extracts could be used to develop novel strategies to prevent and treat metabolic alterations related to mitochondrial dysfunction in the muscle and liver of subjects with obesity, type 2 diabetes, and cardiovascular diseases. However, limited information is available concerning the effect of Chaya extracts on mitochondrial activity in those tissues. AIM OF THE STUDY: The aim of this study was to evaluate the antioxidant capacity of an aqueous extract (AE) or mixed (methanol/acetone/water) extract (ME) of Chaya leaf and their effect on C2C12 myotubes and primary hepatocyte mitochondrial bioenergetics and fatty acid oxidation (FAO). MATERIALS AND METHODS: Total polyphenol content and antioxidant activity were determined using the Folin-Ciocalteu method and the oxygen radical absorbance capacity assay, respectively. The effect of AE and ME from Chaya leaf on mitochondrial activity and FAO of C2C12 myotubes and primary hepatocytes was evaluated using an extracellular flux analyzer. RESULTS: The AE and ME from Chaya leaf exhibited antioxidant activity and a polyphenol content similar to nopal, another plant used in Mexican traditional medicine. AE significantly (p < 0.05) decreased the maximal respiration and spare respiratory capacity (SRC) of C2C12 cells, whereas ME had little effect on C2C12 mitochondrial function. Conversely, ME significantly (p < 0.05) decreased SRC in primary hepatocytes, whereas AE increased maximal respiration and SRC at low doses (5 and 10 µM). Moreover, low doses of Chaya AE significantly (p < 0.05) increased AMPK phosphorylation, acyl-coenzyme A oxidase protein abundance, and palmitate oxidation in primary hepatocytes. CONCLUSION: The AE of Chaya leaf increases mitochondrial function and FAO of primary hepatocytes, indicating its potential to treat hepatic mitochondrial dysfunction underlying metabolic diseases.


Assuntos
Antioxidantes , Diabetes Mellitus Tipo 2 , Humanos , Antioxidantes/farmacologia , Extratos Vegetais/farmacologia , Fibras Musculares Esqueléticas , Mitocôndrias , Hepatócitos , Polifenóis/farmacologia , Obesidade , Metabolismo Energético , Ácidos Graxos
11.
Glia ; 71(7): 1626-1647, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36919670

RESUMO

Hypothalamic circuits compute systemic information to control metabolism. Astrocytes residing within the hypothalamus directly sense nutrients and hormones, integrating metabolic information, and modulating neuronal responses. Nevertheless, the role of the astrocytic circadian clock on the control of energy balance remains unclear. We used mice with a targeted ablation of the core-clock gene Bmal1 within Gfap-expressing astrocytes to gain insight on the role played by this transcription factor in astrocytes. While this mutation does not substantially affect the phenotype in mice fed normo-caloric diet, under high-fat diet we unmasked a thermogenic phenotype consisting of increased energy expenditure, and catabolism in brown adipose and overall metabolic improvement consisting of better glycemia control, and body composition. Transcriptomic analysis in the ventromedial hypothalamus revealed an enhanced response to moderate cellular stress, including ER-stress response, unfolded protein response and autophagy. We identified Xbp1 and Atf1 as two key transcription factors enhancing cellular stress responses. Therefore, we unveiled a previously unknown role of the astrocytic circadian clock modulating energy balance through the regulation of cellular stress responses within the VMH.


Assuntos
Relógios Circadianos , Camundongos , Animais , Relógios Circadianos/genética , Astrócitos/metabolismo , Hipotálamo/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Metabolismo Energético/genética
12.
Arch Med Res ; 54(3): 176-188, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36990891

RESUMO

A prolonged and elevated postprandial glucose response (PPGR) is now considered a main factor contributing for the development of metabolic syndrome and type 2 diabetes, which could be prevented by dietary interventions. However, dietary recommendations to prevent alterations in PPGR have not always been successful. New evidence has supported that PPGR is not only dependent of dietary factors like the content of carbohydrates, or the glycemic index of the foods, but is also dependent on genetics, body composition, gut microbiota, among others. In recent years, continuous glucose monitoring has made it possible to establish predictions on the effect of different dietary foods on PPGRs through machine learning methods, which use algorithms that integrate genetic, biochemical, physiological and gut microbiota variables for identifying associations between them and clinical variables with aim of personalize dietary recommendations. This has allowed to improve the concept of personalized nutrition, since it is now possible to recommend through these predictions specific dietary foods to prevent elevated PPGRs that are highly variable among individuals. Additional components that can enrich the predictive algorithms are findings of nutrigenomics, nutrigenetics and metabolomics. Thus, this review aims to summarize the evidence of the components that integrate personalized nutrition focused on the prevention of PPGRs, and to show the future of personalized nutrition by laying the groundwork for the development of individualized dietary management and its impact on the improvement of metabolic diseases.


Assuntos
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Humanos , Diabetes Mellitus Tipo 2/prevenção & controle , Automonitorização da Glicemia , Glicemia , Glucose
13.
Int J Mol Sci ; 24(4)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36835337

RESUMO

Cardamom seed (Elettaria cardamomum (L.) Maton; EC) is consumed in several countries worldwide and is considered a nutraceutical spice since it exerts antioxidant, anti-inflammatory, and metabolic activities. In obese individuals, EC intake also favors weight loss. However, the mechanism for these effects has not been studied. Here, we identified that EC modulates the neuroendocrine axis that regulates food intake, body weight, mitochondrial activity, and energy expenditure in mice. We fed C57BL/6 mice with diets containing 3%, 6%, or 12% EC or a control diet for 14 weeks. Mice fed the EC-containing diets gained less weight than control, despite slightly higher food intake. The lower final weight of EC-fed mice was due to lesser fat content but increased lean mass than control. EC intake increased lipolysis in subcutaneous adipose tissue, and reduced adipocyte size in subcutaneous, visceral, and brown adipose tissues. EC intake also prevented lipid droplet accumulation and increased mitochondrial content in skeletal muscle and liver. Accordingly, fasting and postprandial oxygen consumption, as well as fasting fat oxidation and postprandial glucose utilization were higher in mice fed with EC than in control. EC intake reduced proopiomelanocortin (POMC) mRNA content in the hypothalamic arcuate nucleus, without an impact on neuropeptide Y (NPY) mRNA. These neuropeptides control food intake but also influence the hypothalamic-pituitary-thyroid (HPT) and hypothalamic-pituitary-adrenal (HPA) axes. Thyrotropin-releasing hormone (TRH) mRNA expression in the hypothalamic paraventricular nucleus (PVN) and circulating triiodothyronine (T3) were lower in EC-fed mice than in control. This effect was linked with decreased circulating corticosterone and weight of adrenal glands. Our results indicate that EC modulates appetite, increases lipolysis in adipose tissue and mitochondrial oxidative metabolism in liver and skeletal muscle, leading to increased energy expenditure and lower body fat mass. These metabolic effects were ascribable to the modulation of the HPT and HPA axes. LC-MS profiling of EC found 11 phenolic compounds among which protocatechuic acid (23.8%), caffeic acid (21.06%) and syringic acid (29.25%) were the most abundant, while GC-MS profiling showed 16 terpenoids among which costunolide (68.11%), ambrial (5.3%) and cis-α-terpineol (7.99%) were identified. Extrapolation of mice-to-human EC intake was performed using the body surface area normalization equation which gave a conversion equivalent daily human intake dose of 76.9-308.4 mg bioactives for an adult of 60 kg that can be obtained from 14.5-58.3 g of cardamom seeds (18.5-74.2 g cardamom pods). These results support further exploration of EC as a coadjuvant in clinical practice.


Assuntos
Tecido Adiposo , Elettaria , Metabolismo Energético , Lipólise , Fígado , Músculo Esquelético , Animais , Humanos , Camundongos , Tecido Adiposo Marrom , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo , Estresse Oxidativo , RNA Mensageiro , Sementes
14.
Cell Mol Neurobiol ; 43(4): 1595-1618, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-35953741

RESUMO

Fiber intake is associated with a lower risk for Alzheimer´s disease (AD) in older adults. Intake of plant-based diets rich in soluble fiber promotes the production of short-chain fatty acids (SCFAs: butyrate, acetate, propionate) by gut bacteria. Butyrate administration has antiinflammatory actions, but propionate promotes neuroinflammation. In AD patients, gut microbiota dysbiosis is a common feature even in the prodromal stages of the disease. It is unclear whether the neuroprotective effects of fiber intake rely on gut microbiota modifications and specific actions of SCFAs in brain cells. Here, we show that restoration of the gut microbiota dysbiosis through the intake of soluble fiber resulted in lower propionate and higher butyrate production, reduced astrocyte activation and improved cognitive function in 6-month-old male APP/PS1 mice. The neuroprotective effects were lost in antibiotic-treated mice. Moreover, propionate promoted higher glycolysis and mitochondrial respiration in astrocytes, while butyrate induced a more quiescent metabolism. Therefore, fiber intake neuroprotective action depends on the modulation of butyrate/propionate production by gut bacteria. Our data further support and provide a mechanism to explain the beneficial effects of dietary interventions rich in soluble fiber to prevent dementia and AD. Fiber intake restored the concentration of propionate and butyrate by modulating the composition of gut microbiota in male transgenic (Tg) mice with Alzheimer´s disease. Gut dysbiosis was associated with intestinal damage and high propionate levels in control diet fed-Tg mice. Fiber-rich diet restored intestinal integrity and promoted the abundance of butyrate-producing bacteria. Butyrate concentration was associated with better cognitive performance in fiber-fed Tg mice. A fiber-rich diet may prevent the development of a dysbiotic microbiome and the related cognitive dysfunction in people at risk of developing Alzheimer´s disease.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Microbioma Gastrointestinal , Fármacos Neuroprotetores , Camundongos , Animais , Propionatos/farmacologia , Doença de Alzheimer/metabolismo , Microbioma Gastrointestinal/fisiologia , Disbiose , Fármacos Neuroprotetores/farmacologia , Butiratos/farmacologia , Butiratos/metabolismo , Fibras na Dieta/farmacologia , Camundongos Transgênicos , Disfunção Cognitiva/prevenção & controle
15.
J Cell Biol ; 221(12)2022 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-36197339

RESUMO

Adipocytes are the main cell type in adipose tissue, which is a critical regulator of metabolism, highly specialized in storing energy as fat. Adipocytes differentiate from multipotent mesenchymal stromal cells (hMSCs) through adipogenesis, a tightly controlled differentiation process involving close interplay between metabolic transitions and sequential programs of gene expression. However, the specific gears driving this interplay remain largely obscure. Additionally, the metabolite nicotinamide adenine dinucleotide (NAD+) is becoming increasingly recognized as a regulator of lipid metabolism, and a promising therapeutic target for dyslipidemia and obesity. Here, we explored how NAD+ bioavailability controls adipogenic differentiation from hMSC. We found a previously unappreciated repressive role for NAD+ on adipocyte commitment, while a functional NAD+-dependent deacetylase SIRT1 appeared crucial for terminal differentiation of pre-adipocytes. Repressing NAD+ biosynthesis during adipogenesis promoted the adipogenic transcriptional program, while two-photon microscopy and extracellular flux analyses suggest that SIRT1 activity mostly relies on the metabolic switch. Interestingly, SIRT1 controls subcellular compartmentalization of redox metabolism during adipogenesis.


Assuntos
Adipócitos , Adipogenia , NAD , Sirtuína 1 , Adipócitos/metabolismo , Diferenciação Celular , Expressão Gênica , NAD/metabolismo , Sirtuína 1/genética , Sirtuína 1/metabolismo
16.
ACS Omega ; 7(15): 13144-13154, 2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35474764

RESUMO

The roots of the cactus Peniocereus greggii, which grows in Northern Mexico and in the south of Arizona, are highly valued by the Pima to treat diabetes and other illnesses, such as breast pain and common cold. As part of our chemical and pharmacological investigation on medicinal plants used for treating diabetes, herein we report the hypoglycemic and antihyperglycemic action of a decoction prepared from the roots of the plant. The active compounds were a series of cholestane steroids, namely, peniocerol (2), desoxyviperidone (3), viperidone (4), and viperidinone (5). Also, a new chemical entity was obtained from an alkalinized chloroform extract (CE1), which was characterized as 3,6-dihydroxycholesta-5,8(9),14-trien-7-one (6) by spectroscopic means. Desoxyviperidone (3) showed an antihyperglycemic action during an oral glucose tolerance test. Compound 3 was also able to decrease blood glucose levels during an intraperitoneal insulin tolerance test in hyperglycemic mice only in combination with insulin, thus behaving as an insulin sensitizer agent. Nevertheless, mitochondrial bioenergetic experiments revealed that compounds 3 and 6 increased basal respiration and proton leak, without affecting the respiration associated with ATP production in C2C12 myotubes. Finally, an ultraefficiency liquid chromatographic method for quantifying desoxyviperidone (3) and viperidone (4) in the crude drug was developed and validated. Altogether, our results demonstrate that Peniocereus greggii decoction possesses a hypoglycemic and antihyperglycemic action in vivo, that sterols 2 and 6 promotes insulin secretion in vitro, and that desoxyviperidone (3) physiologically behaves as an insulin sensitizer agent by a mechanism that may involve mitochondrial proton leak.

17.
Int J Mol Sci ; 23(5)2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35269715

RESUMO

Acute kidney injury (AKI) is a public health problem worldwide. Sirtuins are a family of seven NAD+-dependent deacylases, Overexpression of Sirtuin 1, 3, and 5 protect against AKI. However, the role of Sirtuin 7 (Sirt7) in AKI is not known. Here, we analyzed how Sirt7 deficient mice (KO-Sirt7) were affected by AKI. As expected, wild-type and Sirt7 heterozygotes mice that underwent renal ischemia/reperfusion (IR) exhibited the characteristic hallmarks of AKI: renal dysfunction, tubular damage, albuminuria, increased oxidative stress, and renal inflammation. In contrast, the KO-Sirt7+IR mice were protected from AKI, exhibiting lesser albuminuria and reduction in urinary biomarkers of tubular damage, despite similar renal dysfunction. The renoprotection in the Sirt7-KO+IR group was associated with reduced kidney weight, minor expression of inflammatory cytokines and less renal infiltration of inflammatory cells. This anti-inflammatory effect was related to diminished p65 expression and in its active phosphorylation, as well as by a reduction in p65 nuclear translocation. Sirt7 deficient mice are protected from AKI, suggesting that this histone deacetylase promotes tubular damage and renal inflammation. Therefore, our findings indicate that Sirt7 inhibitors may be an attractive therapeutic target to reduce NFκB signaling.


Assuntos
Injúria Renal Aguda , Traumatismo por Reperfusão , Sirtuínas/metabolismo , Injúria Renal Aguda/metabolismo , Albuminúria , Animais , Inflamação/metabolismo , Rim/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Traumatismo por Reperfusão/metabolismo , Sirtuínas/genética
18.
Nutrients ; 14(3)2022 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-35277012

RESUMO

SIRT1 is an NAD+-dependent class III histone deacetylase that is abundantly expressed in the kidney, where it modulates gene expression, apoptosis, energy homeostasis, autophagy, acute stress responses, and mitochondrial biogenesis. Alterations in SIRT1 activity and NAD+ metabolism are frequently observed in acute and chronic kidney diseases of diverse origins, including obesity and diabetes. Nevertheless, in vitro and in vivo studies and clinical trials with humans show that the SIRT1-activating compounds derived from natural sources, such as polyphenols found in fruits, vegetables, and plants, including resveratrol, quercetin, and isoflavones, can prevent disease and be part of treatments for a wide variety of diseases. Here, we summarize the roles of SIRT1 and NAD+ metabolism in renal pathophysiology and provide an overview of polyphenols that have the potential to restore SIRT1 and NAD+ metabolism in renal diseases.


Assuntos
Nefropatias , Sirtuína 1 , Humanos , Rim/metabolismo , Nefropatias/tratamento farmacológico , Nefropatias/metabolismo , NAD/metabolismo , Polifenóis/farmacologia , Sirtuína 1/metabolismo
19.
Mol Nutr Food Res ; 66(8): e2100838, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35142428

RESUMO

SCOPE: Genistein increases whole body energy expenditure by stimulating white adipose tissue (WAT) browning and thermogenesis. G-Coupled receptor GPR30 can mediate some actions of genistein, however, it is not known whether it is involved in the activation of WAT-thermogenesis. Thus, the aim of the study is to determine whether genistein activates thermogenesis coupled to an increase in WAT browning and mitochondrial activity, in GPR30+/+ and GPR30-/- mice. METHODS AND RESULTS: GPR30+/+ and GPR30-/- mice are fed control or high fat sucrose diets containing or not genistein for 8 weeks. Body weight and composition, energy expenditure, glucose tolerance, and browning markers in WAT, and oxygen consumption rate, 3', 5'-cyclic adenosine monophosphate (cAMP) concentration and browning markers in adipocytes are evaluated. Genistein consumption reduces body weight and fat mass gain in a different extent in both genotypes, however, energy expenditure is lower in GPR30-/- compared to GPR30+/+ mice, accompanied by a reduction in browning markers, maximal mitochondrial respiration, cAMP concentration, and browning markers in cultured adipocytes from GPR30-/- mice. Genistein improves glucose tolerance in GPR30+/+ , but this is partially observed in GPR30-/- mice. CONCLUSION: The results show that GPR30 partially mediates genistein stimulation of WAT thermogenesis and the improvement of glucose tolerance.


Assuntos
Tecido Adiposo Marrom , Genisteína , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Peso Corporal , Metabolismo Energético , Genisteína/metabolismo , Genisteína/farmacologia , Glucose/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Termogênese/genética
20.
Br J Nutr ; 128(1): 43-54, 2022 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-34340727

RESUMO

Branched-chain amino acids (BCAA) are considered markers of insulin resistance (IR) in subjects with obesity. In this study, we evaluated whether the presence of the SNP of the branched-chain aminotransferase 2 (BCAT2) gene can modify the effect of a dietary intervention (DI) on the plasma concentration of BCAA in subjects with obesity and IR. A prospective cohort study of adult subjects with obesity, BMI ≥ 30 kg/m2, homeostatic model assessment-insulin resistance (HOMA-IR ≥ 2·5) no diagnosed chronic disease, underwent a DI with an energy restriction of 3140 kJ/d and nutritional education for 1 month. Anthropometric measurements, body composition, blood pressure, resting energy expenditure, oral glucose tolerance test results, serum biochemical parameters and the plasma amino acid profile were evaluated before and after the DI. SNP were assessed by the TaqMan SNP genotyping assay. A total of eighty-two subjects were included, and fifteen subjects with a BCAT2 SNP had a greater reduction in leucine, isoleucine, valine and the sum of BCAA. Those subjects also had a greater reduction in skeletal muscle mass, fat-free mass, total body water, blood pressure, muscle strength and biochemical parameters after 1 month of the DI and adjusting for age and sex. This study demonstrated that the presence of the BCAT2 SNP promotes a greater reduction in plasma BCAA concentration after adjusting for age and sex, in subjects with obesity and IR after a 1-month energy-restricted DI.


Assuntos
Resistência à Insulina , Proteínas da Gravidez , Adulto , Humanos , Estudos Prospectivos , Glicemia/metabolismo , Aminoácidos de Cadeia Ramificada , Obesidade/metabolismo , Transaminases/genética , Proteínas da Gravidez/genética , Antígenos de Histocompatibilidade Menor
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...